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Abstract—This paper proposes two interpolation-based alge-
braic Chase decoding for elliptic codes. It is introduced from the
perspective of computing the Gröbner basis of the interpolation
module, for which two Chase interpolation approaches are
utilized. They are Kötter’s interpolation and the basis reduction
(BR) interpolation. By identifying η unreliable symbols, 2η

decoding test-vectors are formulated, and the corresponding
interpolation modules can be defined. The re-encoding further
helps transform the test-vectors, facilitating the two interpolation
techniques. In particular, Kötter’s interpolation is performed for
the common elements of the test-vectors, producing an interme-
diate outcome that is shared by the decoding of all test-vectors.
The desired Gröbner bases w.r.t. all test-vectors can be obtained
in a binary tree growing fashion, leading to a low complexity but
its decoding latency cannot be contained. In contrast, the BR
interpolation first performs the common computation in basis
construction which is shared by all interpolation modules, and
then conducts the module basis construction and reduction for
all test-vectors in parallel. It results in a significantly lower
decoding latency. Finally, simulation results are also presented to
demonstrate the effectiveness of the proposed Chase decoding.

Index Terms—Algebraic geometric codes, Chase decoding,
elliptic codes, interpolation, list decoding

I. INTRODUCTION

Algebraic-geometric (AG) codes are linear block codes
derived from algebraic curves. Compared with RS codes,
general AG codes are longer with a greater error-correction
capability. But due to the existence of curve genus, they are
not maximum distance separable (MDS) codes with a reduced
error-correction efficiency. Elliptic curves have a genus of one,
resulting in the codes being either MDS or almost MDS.
Hence, they inherit a good tradeoff between error-correction
capability and efficiency.

Guruswami and Sudan (GS) [1] proposed list decoding of
RS and AG codes, which consists of interpolation and root-
finding, where the former dominates the decoding complexity.
It is often realized through Kötter’s approach [2]. GS decoding
of elliptic codes was also proposed by the authors in [3]. Kötter
and Vardy [4] generalized the GS algorithm and proposed
the algebraic soft decoding (ASD) for RS codes. The other
interpolation approach is designed from the perspective of
the module basis reduction (BR) [5] [6]. It consists of basis
construction and its reduction. The latter can be realized by
the Mulders-Storjohann (MS) algorithm [7], or other improved
variants [8] [9]. Lee and O’Sullivan proposed the GS decoding

and the ASD of Hermitian codes using the BR interpolation
in [10] and [11], respectively. Recently, the GS decoding and
the ASD of elliptic codes were also proposed by the authors
in [12] and [13], respectively. Different from the ASD frame-
work, Bellorado and Kavcic proposed another soft decoding
algorithm, namely the low-complexity Chase (LCC) decoding
for RS codes [14]. With the same test-vector formulation, LCC
decoding of Hermitian codes using Kötter’s interpolation was
proposed by Wu et al. [15]. Based on the BR interpolation,
LCC decoding of RS codes was proposed by Xing et al. [16].

This paper introduces two interpolation-based algebraic
Chase decoding for elliptic codes. It is proposed from the
perspective of computing the Gröbner basis of the interpolation
module. It is substantiated by either Kötter’s interpolation or
the BR interpolation. By formulating test-vectors, the corre-
sponding interpolation modules are defined. The re-encoding is
introduced to transform these modules, reducing the interpola-
tion complexity. We show that by fully utilizing the similarity
among test-vectors, Kötter’s interpolation is performed for
the common interpolation points, producing an intermediate
outcome that is shared by the following interpolation for the
uncommon points. The uncommon element interpolation is
performed in a binary tree growing fashion, delivering the
Gröbner bases for all test-vectors. It exhibits a low complexity
but with a decoding latency that cannot be contained. In
contrast, the BR interpolation can perform the computation
of all Gröbner bases in parallel. It results in a significantly
lower latency. Finally, simulation results of the proposed Chase
decoding are presented, demonstrating their effectiveness.

II. BACKGROUND KNOWLEDGE

A. Elliptic Codes

Let Fq = {σ0, σ1, . . . , σq−1} denote the finite field of size q.
An affine elliptic curve E over Fq is defined by a non-singular
Weierstrass equation as

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (1)

with a1, a2, a3, a4, a6 ∈ Fq . It has a genus g = 1. On curve E,
there exist at most q+ ⌊2√q⌋ affine points Pj = (xj , yj) and
a point of infinity P∞. Let −Pj = (xj , y

′
j) denote the inverse

of Pj . We define the following coordinate sets

A = {xj | Pj = (xj , yj), ∀j}, (2)
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Bj = {yj , y′j}. (3)

The coordinate ring of E is R = Fq[X,Y ]/⟨E⟩. It consists
of functions in the form of h0(x) + h1(x)y, where h0(x),
h1(x) ∈ Fq[x], and x and y are the residue classes of X and
Y , respectively. The quotient field of R is called the elliptic
function field, denoted as Fq(E). Given h ∈ Fq(E), its order
at point P is denoted as vP (h). If vP (h) > 0, h has a zero of
order vP (h) at P . Otherwise, it has a pole of order −vP (h)
at P . For elliptic curves, −vP∞(x) = 2, −vP∞(y) = 3 and
−vP∞(xλyγ) = 2λ+ 3γ.

Definition 1 ([17]): Let nP denote an integer correspond-
ing to P , D =

∑
P∈E nP [P ] is a divisor of E. If h ∈ Fq(E)

and h ̸= 0, the divisor of h is div(h) =
∑

P∈E vP (h)[P ].
Let L(D) denote the Riemann-Roch space defined by

the divisor D. For L(u[P∞]) = {h ∈ Fq(E)|div(h) +
u[P∞] ≽ 0}

∪
{0}, there exists a pole basis consisting of

{ϕa = 1 | a = 0} ∪ {ϕa = xλyγ | a = 2λ + 3γ −
1, a ∈ (0, u), λ ∈ N, γ ∈ {0, 1}}, where “ ≽ ” indicates
that the coefficients of div(h) + u[P∞] are nonnegative and
N denotes the set of nonnegative integers. It holds that
−vP∞(ϕa) < −vP∞(ϕa+1). For each Pj , there exists a
zero basis {ψPj ,0, ψPj ,1, . . . , ψPj ,u−1} of L(u[P∞]) such that
ψPj ,µ(xj , yj) = 0 and vPj

(ψPj ,µ) = µ. Given a pole basis
monomial ϕa, we have ϕa =

∑
µ∈N ξa,Pj ,µψPj ,µ, where

ξa,Pj ,µ ∈ Fq is the corresponding coefficient between ϕa and
ψPj ,µ [2] [18]. Hence, R =

∪∞
u=0 L(u[P∞]). Given h ∈ R,

it can be written as h =
∑

a∈N ζaϕa, where ζa ∈ Fq and
−vP∞(h) = max{−vP∞(ϕa) | ζa ̸= 0}.

Let f = f0ϕ0+f1ϕ1+ · · ·+fk−1ϕk−1 ∈ L(k[P∞]) denote
a message polynomial, an (n, k) elliptic code is defined as

CE(k[P∞]) = {(f(P0), f(P1), . . . , f(Pn−1)), ∀f}, (4)

where c = (c0, c1, . . . , cn−1) ∈ CE(k[P∞]) is a codeword.
With g = 1, the minimum Hamming distance of the code is
lower bounded as d ≥ n− k − g + 1 = n− k.

B. GS Decoding of Elliptic Codes

Let R[z] denote the polynomial ring over R and R[z]l =
{Q ∈ R[z] | degz Q ≤ l}. Given r = (r0, r1, . . . , rn−1) ∈ Fn

q

as a received word, the set of n interpolation points is

P = {(P0, r0), (P1, r1), . . . , (Pn−1, rn−1)}. (5)

A polynomial Q in R[z]l can be written as Q =∑
a∈N

∑
b≤lQabϕaz

b, where Qab ∈ Fq . Its (µ, ν)-Hasse
derivative evaluation at (Pj , rj) is defined as [3]

D(Pj ,rj)
µν (Q) =

∑
a∈N

l∑
b=ν

Qab

(
b

ν

)
ξa,Pj ,µr

b−ν
j . (6)

If Q(Pj , rj) = 0, Q interpolates (Pj , rj). Furthermore, if
D(Pj ,rj)

µν (Q) = 0, ∀ µ + ν < m, Q interpolates the point
with a zero of multiplicity m.

The GS decoding consists of interpolation and root-finding.
The former determines a nonzero minimum polynomial
Q(x, y, z) =

∑l
ϱ=0 Q[ϱ](x, y)z

ϱ ∈ R[z]l, which interpolates

points of P with a multiplicity of m. The latter finds z-roots
of Q, which constitute the decoding output list.

For monomial ϕazb ∈ R[z], its (1, ϖ)-weighted degree
is defined as deg1,ϖ(ϕaz

b) = −vP∞(ϕa) + ϖb. Therefore,
given two distinct monomials ϕa1z

b1 , ϕa2z
b2 ∈ R[z], they

can be arranged in the (1, ϖ)-revlex order [12]. This order also
enables each polynomial in R[z]l to be identified by its leading
monomial (the monomial with the highest order). Hence, poly-
nomials in R[z]l can be ordered by their leading monomials.
In decoding an (n, k) elliptic code, ϖ = −vP∞(ϕk−1) = k.
Therefore, the desired interpolation polynomial Q(x, y, z) is
a nonzero minimal polynomial under the (1, k)-revlex order.

Definition 2: The interpolation module IP,l is the space of
all polynomials Q over R[z]l. They have a zero of multiplicity
m at the interpolation points of P.

The interpolation polynomial Q can be founded through
computing a Gröbner basis of IP,l. Let ind(Q) = (γ, b) denote
the index of Q if the leading monomial of Q is xλyγzb. The
following Lemma gives a simple criterion for verifying the
desired Gröbner basis.

Lemma 1 ([11]): Given a basis {Mt(x, y, z) | 0 ≤ t ≤
2l + 1} of an Fq[x]-submodule IP,l. Under the (1, ϖ)-revlex
order, if ind(Mt) ̸= ind(Mt′), ∀t ̸= t′, {Mt | 0 ≤ t ≤ 2l+1}
is a Gröbner basis of IP,l.

The desired polynomial Q is the minimum candidate of
the above Gröbner basis, which can be computed by either
Kötter’s approach [3] or the BR approach [12].

III. TEST-VECTORS FORMULATION

This section introduces the test-vector formulation for the
proposed LCC decoding. Re-encoding transform is applied to
the test-vectors, underpinning the low-complexity interpola-
tion.

A. Formulation
Assume that codeword c = (c0, c1, . . . , cn−1) is transmitted

through a discrete memoryless channel. Given received vector
r = (r0, r1, . . . , rn−1) ∈ Rn, a reliability matrix Π can be
obtained. Its entries πij = Pr[rj | cj = σi] are the symbol
wise channel transition probabilities, where 0 ≤ i ≤ q − 1
and 0 ≤ j ≤ n − 1. Let iIj = argmax{πij | ∀i} and iIIj =
argmax{πij | i ̸= iIj} denote the row indices of the largest and
the second largest entries in column j of Π. For cj , the two
most likely decisions are rIj = σiIj and rIIj = σiIIj , respectively.
The symbol wise reliability metric is defined as

γj =
πiIjj

πiIIj j

, (7)

where γj ∈ (1,+∞) [14]. The decision on cj is more reliable
if γj is greater, and vice versa. By sorting the above n reliabili-
ty metrics in a descending order, a new symbol index sequence
j0, j1, . . . , jn−1 can be yielded. Let Θ = {j0, j1, . . . , jn−η−1}
denote the index set of the n − η most reliable symbols.
Its complementary set is Θc = {jn−η, jn−η+1, . . . , jn−1}.
Subsequently, 2η test-vectors can be formulated as

ru = (r
(u)
j0
, r

(u)
j1
, . . . , r

(u)
jn−η−1

, r
(u)
jn−η

, . . . , r
(u)
jn−1

), (8)
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where r(u)j = rIj , if j ∈ Θ; and r
(u)
j = rIj or rIIj , if j ∈ Θc.

As a result, 2η sets of interpolation points can be formed as

P(u) = {(Pj0 , r
(u)
j0

), (Pj1 , r
(u)
j1

), . . . , (Pjn−1 , r
(u)
jn−1

)}, (9)

where 1 ≤ u ≤ 2η.

B. Re-encoding Transform

Re-encoding further transforms 2
⌊
k−1
2

⌋
points of P(u) to

have a zero z-coordinate, reducing the interpolation complex-
ity. Let P(u)

Θ and P
(u)
Θc denote the set of interpolation points

defined by Θ and Θc, respectively, and P(u) = P
(u)
Θ ∪ P

(u)
Θc .

For each set of interpolation points, they can be categorized
into

⌊
n
2

⌋
pairs, each of which share the same x-coordinate.

Hence,
⌊
k−1
2

⌋
pairs of interpolation points will be chosen for

re-encoding, which are called the re-encoding points. To best
reduce the interpolation complexity, the

⌊
k−1
2

⌋
pairs of the

re-encoding points should be selected from P
(u)
Θ . Therefore,

P
(u)
Θ should contain at least

⌊
k−1
2

⌋
different x-coordinates.

Let Γ denote the index set of the re-encoding points and
Γc = {0, 1, . . . , n− 1} \ Γ. Further let P(u)

Γ and P
(u)
Γc denote

the set of the interpolation points defined by Γ and Γc,
respectively, and P(u) = P

(u)
Γ ∪ P

(u)
Γc . It should be ensured

that Γ ⊆ Θ. Without loss of generality, Γ can be written as

Γ = {j0, j1, . . . , j2⌊ k−1
2 ⌋−1}. (10)

Since j2ι and j2ι+1 satisfy Pj2ι = −Pj2ι+1 , where ι =
0, 1, . . . ,

⌊
k−1
2

⌋
− 1. Therefore, the re-encoding points are

P
(u)
Γ = {(Pj0 , r

(u)
j0

), . . . , (Pj
2⌊ k−1

2 ⌋−1
, r

(u)
j
2⌊ k−1

2 ⌋−1

)}. (11)

Remark 1: In order to let all test-vectors share at least⌊
k−1
2

⌋
pairs of common symbols, the number of unreliable

symbols should satisfy η ≤ n − 2
⌊
k−1
2

⌋
. As a result,

the corresponding η interpolation points will exhibit at most⌊
n
2

⌋
−
⌊
k−1
2

⌋
different x-coordinates.

Let us define
AΓ = {xj | j ∈ Γ}, (12)

AΓc = A \ AΓ. (13)

Based on Theorem 10 of [12], the re-encoding polynomial KΓ

can be defined as

KΓ =
∑
j∈Γ

r
(u)
j

∏
α∈AΓ\{xj}

x− α

xj − α

∏
β∈Bj\{yj}

y − β

yj − β
. (14)

Note that it can be seen as the Lagrange interpolation poly-
nomial, and KΓ(Pj) = r

(u)
j if j ∈ Γ. Consequently, all test-

vectors can be transformed by

ru 7→ zu : z
(u)
j = r

(u)
j −KΓ(Pj), ∀j. (15)

They can be written as

zu = (z
(u)
j0
, z

(u)
j1
, . . . , z

(u)
jn−1

). (16)

Therefore, if j ∈ Γ, z(u)j = 0. Among all test-vectors, at least
2
⌊
k−1
2

⌋
common positions will be zero. The corresponding

set of interpolation points can be represented as

Pu = {(P0, z
(u)
0 ), (P1, z

(u)
1 ), . . . , (Pn−1, z

(u)
n−1)}. (17)

The interpolation module IPu will be further transformed.
First, the following lemma needs to be introduced.

Lemma 2: Let Q = Q(0) + Q(1)z ∈ IPu and GΓ =∏
α∈AΓ

(x− α), then GΓ | Q(0).

Proof: Since Q ∈ IPu , for (Pj , z
(u)
j ) ∈ Pu with j ∈ Γ,

Q can be written as Q = Q(0)′Λj+Q
(1)z, where Λj = x−xj .

Therefore, for all j ∈ Γ, we can obtain GΓ | Q(0).
Based on Lemma 2, let Q(0) = GΓQ̃

(0), we have Q =
Q̃(0)GΓ +Q(1)z ∈ IPu . With the mapping of

Φ : z 7→ zGΓ, (18)

Q ∈ IPu can be transformed into

Q(x, y, zGΓ) = Q̃(0)GΓ+Q
(1)zGΓ = GΓ(Q̃

(0)+Q(1)z). (19)

Therefore, Q(x, y, zGΓ) interpolates all points in

P′
u = {(Pj , z̃

(u)
j ) | z̃(u)j =

z
(u)
j

GΓ(xj)
, 0 ≤ j ≤ n− 1}. (20)

Let us further partition P′
u into

P̃u = {(Pj , z̃
(u)
j ) ∈ P′

u | j ∈ Γc} (21)

and
P̃c

u = {(Pj , z̃
(u)
j ) ∈ P′

u | j ∈ Γ}, (22)

respectively. Therefore, P̃c
u = {(Pj , 0) | j ∈ Γ}. Note that GΓ

passes through all points in P̃c
u. Let Q̃ = Q̃(0)+Q̃(1)z, where

Q̃(1) = Q(1). Q̃ also passes through all points in P̃u.
With the mapping Φ, all polynomials in IPu can be ex-

pressed in the form of (19). Since GΓ is uniquely determined
for each decoding event, a Gröbner basis of IP̃u

will be deter-
mined by either Kötter’s interpolation or the BR interpolation.
Moreover, since deg1,k(GΓ) = 2

⌊
k−1
2

⌋
, the weighted degree

of z is k − 2⌊k−1
2 ⌋. That says the desired Gröbner basis of

IP̃u
is defined under the (1, k − 2⌊k−1

2 ⌋)-revlex order. What
follow are two interpolation approaches for finding the desired
Gröbner basis for each decoding event, in which each test-
vector will be GS decoded with m = l = 1.

IV. KÖTTER’S INTERPOLATION

Regarding each P̃u, Kötter’s interpolation [3] will be per-
formed to determine a Gröbner basis of IP̃u

. This interpolation
process can be categorized into the common element interpo-
lation and the uncommon element interpolation, respectively.

A. Common Element Interpolation

By (21), there are n− 2
⌊
k−1
2

⌋
interpolation points in P̃u.

Therefore, after interpolating these points, a Gröbner basis of
IP̃u

will be obtained. For all P̃u, there are n− η − 2
⌊
k−1
2

⌋
common elements. Let Γ′ = Θ\Γ denote the index set of those
common elements, we also have Γ = Θ\Γ′ and Θc = Γc \Γ′.
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P̃u can be further partitioned as

P̃u = P̃(1)
u ∪ P̃(2)

u , (23)

where
P̃(1)

u = {(Pj , z̃
(u)
j ) | j ∈ Γ′}, (24)

and
P̃(2)

u = {(Pj , z̃
(u)
j ) | j ∈ Θc}. (25)

Hence, by exploiting the similarity among all test-vectors, the
interpolation will be performed once for the common points
defined in P̃

(1)
u . Its outcome will be utilized by the following

interpolation for the points of P̃(2)
u .

At the beginning, a group of interpolation polynomials are
initialized as

G = {Qt | t = 0, 1, 2, 3} = {1, y, z, yz}. (26)

Based on (6), when m = 1, (µ, ν) = (0, 0), the interpolation
constraints of Qt w.r.t. point (Pj , z

(u)
j ) can be interpreted as

evaluation of Qt at the point, and denoted as ∆t. Let Qt =

Q
(0)
t +Q

(1)
t z, where Q(0)

t , Q(1)
t ∈ R, we have

∆t := D(Pj ,z
(u)
j )

0,0 (Qt) = Q
(0)
t (Pj) +Q

(1)
t (Pj)z

(u)
j . (27)

Therefore, for each interpolation point in P̃u, all polynomials
in G0 will be tested as in (27). If ∆t = 0, Qt interpolates the
point. Otherwise, an update will be needed.

Let Gj denote a group of the updated polynomials after the
jth interpolation constraint (also implied by the jth interpola-
tion point in P̃u) is satisfied. Let

G∗
j−1 = {Qt | ∆t ̸= 0, Qt ∈ Gj−1}. (28)

If G∗
j−1 ̸= ∅, let Qt∗ = minG∗

j−1. The polynomial group
Gj−1 will be updated as follows. For Qt ∈ Gj−1 \ G∗

j−1,

Q′
t = Qt. For Qt ∈ G∗

j−1 \ {Qt∗}, Q′
t = Qt − ∆

(j)
t

∆
(j)

t∗
Qt∗ . For

Qt∗ , Q′
t∗ = (x− xj)Qt∗ .

Since |P̃(1)
u | = n − η − 2

⌊
k−1
2

⌋
, after interpolating the

points in P̃
(1)
u as above, Gn−η−2⌊ k−1

2 ⌋ will be obtained as
the interpolation outcome w.r.t. these common elements.

B. Uncommon Element Interpolation

Since each symbol in Θc has binary decisions, the uncom-
mon element interpolation can be performed in a binary tree
growing fashion. Elaborating from Gn−η−2⌊ k−1

2 ⌋, points in

P̃
(2)
u will be interpolated one by one.
The binary tree has η + 1 layers. At layer η + 1, there are

2η polynomial sets, which correspond to the 2η test-vectors,
respectively. The minimum polynomial Q̃u will be chosen
from G

(u)

n−2⌊ k−1
2 ⌋, which is a Gröbner basis of IP̃u

. Q̃u can
be written as

Q̃u = Q̃(0)
u + Q̃(1)

u z, (29)

where Q̃(0)
u , Q̃(1)

u ∈ R. Based on the mapping Φ, the interpo-

lation polynomial Qu in IPu can be further obtained by

Qu = GΓQ̃u

(
x, y,

z

GΓ

)
= GΓQ̃(0)

u + Q̃(1)
u z, (30)

which interpolates all the points of (17). Let f ′u denote the
z-roots of Qu, it can be written as

f ′u = −GΓQ̃(0)
u

Q̃(1)
u

. (31)

Eq. (31) can be realized by the recursive coefficient search
algorithm [19] [20]. Estimation of the message polynomial fu
can be further obtained by

f̂u = f ′u +KΓ. (32)

After the binary interpolation tree has fully expanded, the
interpolation polynomials Qu of all 2η test-vectors can be
obtained. Each Qu yields at most one estimated message and
its codeword. The estimated codeword that has the smallest
Euclidean distance to the received vector r will be identified.
Its corresponding message will be the decoding output f̂ .

V. THE BR INTERPOLATION

The BR interpolation [12] can also be utilized to determine
a Gröbner basis of IP̃u

, forming an algebraic Chase decoding
that has a remarkable latency advantage over the above LCC
using Kötter’s interpolation. Similarly, the BR interpolation
can be categorized into the common computation (in basis
construction), and the remaining uncommon computation (in
basis construction and their reduction).

A. Common Computation

Let us define the following variants of P̃(1)
u and P̃

(2)
u as

P̃(1)′

u = {(Pj , 0) | j ∈ Γ′}, (33)

P̃(2)′

u = {(Pj , 0) | j ∈ Θc}. (34)

Theorem 3 ([12]): IP̃u
can be generated as an Fq[x]-

module by the following basis

MP̃u
= {M̃ (u)

0 = GΓc , M̃
(u)
1 = yGΓc , M̃

(u)
2 = z −KΓc ,

M̃
(u)
3 = y(z −KΓc)}, (35)

where
GΓ =

∏
α∈AΓ

(x− α) (36)

and

KΓc =
∑
j∈Γc

z
(u)
j

GΓ(xj)

∏
α∈AΓc\{xj}

x− α

xj − α

∏
β∈Bj\{yj}

y − β

yj − β
. (37)

For each set of transformed interpolation points P̃u of (21),
the corresponding basis can be constructed as in (35). How-
ever, there are at least n− η− 2

⌊
k−1
2

⌋
common interpolation

points among all the sets. Based on (23)-(25), in all the basis
of MP̃u

, M̃ (u)
0 and M̃ (u)

1 are the common candidates. Let

KΓc = K(0)
Γc +K(1)

Γc , (38)
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where

K(0)
Γc =

∑
j∈Γ′

z
(u)
j

GΓ(xj)

∏
α∈AΓc\{xj}

x− α

xj − α

∏
β∈Bj\{yj}

y − β

yj − β
, (39)

and

K(1)
Γc =

∑
j∈Θc

z
(u)
j

GΓ(xj)

∏
α∈AΓc\{xj}

x− α

xj − α

∏
β∈Bj\{yj}

y − β

yj − β
. (40)

In MP̃u
, the remaining M̃ (u)

2 and M̃ (u)
3 can be rewritten as

M̃
(u)
2 = z −K(0)

Γc −K(1)
Γc (41)

and
M̃

(u)
3 = y(z −K(0)

Γc −K(1)
Γc ), (42)

respectively. Therefore, for all candidates on MP̃u
, K(1)

Γc is
the only different element. The common part of all bases can
be computed once, yielding M∗

P̃
as

M∗
P̃
= {M̃ (u)∗

0 , M̃
(u)∗
1 , M̃

(u)∗
2 , M̃

(u)∗
3 }, (43)

where M̃
(u)∗
0 = GΓc , M̃ (u)∗

1 = yGΓc , M̃ (u)∗
2 = z − K(0)

Γc ,
M̃

(u)∗
3 = y(z − K(0)

Γc ). Therefore, for each IP̃u
, they share

the same basis M∗
P̃

. Note that the polynomials of M∗
P̃

pass

through the points in P̃
(1)
u ∪ P̃

(2)′

u .

B. Uncommon Computation

Based on M∗
P̃

, by performing the uncommon computation
in basis construction and its reduction, a Gröbner basis of IP̃u

can be obtained. Based on (41) and (42), the uncommon basis
construction is to compute K(1)

Γc . Note that for (Pj , z̃
(u)
j ) ∈

P̃
(2)
u , K(1)

Γc (Pj) = z̃
(u)
j , and for (Pj , 0) ∈ P̃

(1)
u , K(1)

Γc (Pj) = 0.
K(1)

Γc can be seen as the Lagrange interpolation polynomial that
passes through all points in P̃

(2)
u ∪ P̃

(1)′

u . Therefore, based on
(40)-(42), for each P̃u, its basis MP̃u

can be obtained.
The MS algorithm will further reduce MP̃u

into M′
P̃u

that

satisfies ind(M̃ (u)
t ) ̸= ind(M̃

(u)
t′ ), ∀t ̸= t′. Based on Lemma

1, M′
P̃u

is a Gröbner basis of IP̃u
. The minimum polynomial

Q̃u will be further chosen from M′
P̃u

. The remaining root-
finding and decoding output selection processes will be the
same as that described in the end of Section IV.

VI. SIMULATION RESULTS

This section shows the decoding frame error rate (FER) of
the proposed Chase decoding of elliptic codes. It was obtained
over the additive white Gaussian noise (AWGN) channel using
BPSK. The decoding complexity and latency are also shown.
They were measured as the average number of finite field
multiplications and the average simulation running time in
decoding a codeword.

Fig. 1 shows the proposed Chase decoding performance of
the (80, 59) elliptic code. Performances of the GS decoding
with m = 1 and the ASD with l = 2 are shown as
comparison benchmarks. The simulation results show that as η
increases, the Chase decoding performance can be improved.
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Fig. 1: Performance of the (80, 59) elliptic code.

In particular, it can be seen that for the code, the Chase
decoding can significantly outperform the ASD and the GS
decoding.

TABLE I: Interpolation Complexity of Chase Decoding

η Kötter’s interpolation BR interpolation
Comm. Inter. Uncomm. Inter. Comm. Comput. Uncomm. Comput. Basis Red.

2 4.89× 103 5.49× 103 5.27× 103 1.08× 103 8.75× 103

4 3.99× 103 2.47× 104 5.86× 103 7.85× 103 3.61× 104

6 3.17× 103 1.00× 105 6.10× 103 4.53× 104 1.49× 105

Table I shows the interpolation complexity of Chase decod-
ing the (80, 59) elliptic codes using Kötter’s interpolation and
the BR interpolation, respectively. It can be seen that the two
interpolation approaches yield a similar complexity, while the
former is slightly simpler. Despite our earlier research [12] has
shown that the BR interpolation is less complex than Kötter’s
interpolation, under the LCC decoding paradigm, Kötter’s
interpolation of all test-vectors can be performed in a binary
tree growing fashion, eliminating the redundant interpolation
computation and resulting in a complexity advantage over the
BR interpolation. However, the BR interpolation enables the
uncommon computation in basis construction and reduction of
all decoding events to be performed in parallel. It yields a sig-
nificant advantage in decoding latency, which is demonstrated
below as in Table II.

TABLE II: Decoding Latency (ms) Comparison

η Kötter’s interpolation BR interpolation
(80, 39) (80, 59) (80, 39) (80, 59)

2 5.270 6.679 5.040 5.850
4 9.242 11.456 5.161 5.867
6 24.970 29.870 5.201 5.881

Table II shows the latency (in ms) in decoding the (80, 39)
and the (80, 59) elliptic codes. These results were obtained
by simulating the proposed Chase decoding approaches using
C programming language on the Intel core i7-10710U CPU
and Windows 10. By performing the uncommon computation
in basis construction and reduction in parallel, latency of the
BR interpolation substantiated Chase decoding does not vary
remarkably with different η values. Its latency is only defined
by that of decoding a single test-vector. In contrast, latency of
Kötter’s interpolation substantiated Chase decoding increases
with the η values.

ACKNOWLEDGEMENT

This work is sponsored by the National Natural Science
Foundation of China (NSFC) with project IDs 62071498 and
61972429, and the Guangdong Major Project of Basic and
Applied Basic Research with project ID 2019B030302008.

2022 IEEE International Symposium on Information Theory (ISIT)

184Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on November 03,2022 at 01:51:59 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometry codes,” IEEE Trans. Inf. Theory, vol. 45, no. 6,
pp. 1757–1767, Sep. 1999.

[2] T. Høholdt and R. Nielsen, “Decoding Hermitian codes with Sudan’s
algorithm,” in Pro. Int. Symp. Applied Algebra, Algebraic Algorithms,
and Error-Correcting Codes, vol. 1719. Germany, Berlin:Springer-
Verlag, 1999, pp. 260–269.

[3] Y. Wan, L. Chen, and F. Zhang, “Design of Guruswami-Sudan list
decoding for elliptic codes,” in Proc. IEEE Inf. Theory Workshop, Visby,
Sweden, Aug. 2019, pp. 1–5.

[4] R. Kötter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Inf. Theory, vol. 49, no. 11, pp. 2809–
2825, Nov. 2003.

[5] H. O’Keeffe and P. Fitzpatrick, “Gröbner basis solutions of constrained
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